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ABSTRACT

We consider information retrieval when the data, for instance multimedia, is computa-

tionally expensive to fetch. Our approach uses "information filters" to considerably narrow

the universe of possibilities before retrieval. Then decisions must be made about the neces-

sity, order, and concurrent processing of proposed filters (an "execution plan"). We develop

simple polynomial-time local criteria for optimal execution plans, and show that most forms

of concurrency are suboptimal with information filters. Although the general problem of

finding an optimal execution plan is likely exponential in the number of filters, we show

experimentally that our local optimality criteria, used in a polynomial-time algorithm, nearly

always find the global optimum with 15 filters or less, a sufficient number of filters for most

applications. Our methods do not require special hardware and avoid die high processor idle-

ness that is characteristic of massive-parallelism solutions to this problem. We apply our

ideas to an important application, information retrieval of captioned data using natural-

language understanding, a problem for which the natural-language processing can be the

bottleneck if not implemented well.

1 This work was sponsored by DARPA as part of the 13 Project under AO 8939, and by the U. S. Naval Postgra-

duate School under funds provided by the Chief for Naval Operations. Discussions with Amr Zaky improved this
paper. Classification: H.3.3 (Information Search and Retrieval), Search Processes. Additional terms: filters,
optimization, queries, conjunction, boolean algebra, natural language.
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1. Istroduction

Information retrieval of multimedia data differs from traditional information retrieval in that the data can be so

much costlier to fetch because it is so much larger. Thus high recall (retrieval of all relevant data in the data-

base) and high precision (yield of relevant data in the fetched set) are more important than in citation retrieval.

So more effort is needed before data fetch, and it is important to find the best way to do it. The best ways are

not necessarily the same as the best ways for traditional database systems, as discussed in work such as [3, 5,

12, 19].

We are exploring the concept of "information filters" [2] to improve query performance. These processes take

as input a set of media-object pointers, and return the subset that pass some necessary but not sufficient condi-

tions for a data match. Different filters can work on separate parts of a query, or on separate media if each

datum is multimedia (as when pictures have associated text captions or audio). We assume here that filters err

only on the side of caution, so that they never exclude relevant media objects. Even though detailed examina-

tion of the data would subsume their results, information filters can be cost-effective if their cost is significantly

less than a data match. But not all filters are cost-effective, nor all ways of using them, and we need to develop

a theory for using them.

Signature matching [4, 8, 10, 11] is a special case of information filtering that has been fruitfully applied first to

text data and then to multimedia data. It extracts the key words in text, the key shapes in pictures, or the key

sounds in audio, and hashes them into a "signature table". At query time, query words or features are also

hashed into the signature table. A hash hit on any word or feature is a necessary but not sufficient condition for

an exact match between the query and some multimedia datum that was hashed there. The signature file can be

stored in main memory, and searching it can be considerably faster than searching a secondary-storage index to

the data. Thus signature matching is a special case of information filtering as we defined it above. Signature

matching does usually require, however, that each media object be described manually, the description must

anticipate most future queries (which is difficult, as discussed in [201), and the match be exact.

Some ways of signature matching are better than others. As an example, suppose a user wants to find a picture
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of a F-IS aicraft on a runway in a databae of captioned pictures. a typical query of those we have been

studying for the Photo Lab of the Naval Air Warfare Center, Weapons Division (NAWC-WD), China Lake, Cal-

ifornia, USA [21]. This could be decomposed into four filters applied to the picture database: (1) pictures of F-

ISs, (2) pictures of runways, (3) pictures of things "on" other things, and (4) pictures of F-18s on runways.

Intuitively, it would seem best to apply the first three filters in that order because "F-18" is quite specific, "run-

way" less so, and "on" even less so. Intuitively, it would also seem that the third filter could be eliminated in

deference in the fourth, because almost always an aircraft is on a runway and not beside it, underneath it. or in

some other relationship to it. But we need mathematics to justify these intuitions.

The primary objective of this paper is to present a general theory of optimal information retrieval with informa-

tion filters. While the theory applies to all kinds of filters, it contains important new results about signature and

other redundant filters, which have not previously been carefully analyzed as abstracted components of an

information-retrieval system. We will use a simple model of filter cost that corresponds closely to that of most

information-retrieval implementations. We will first examine in sections 2 and 3 the most common kind of

multi-filtering, conjunctive filtering, and provide simple local optimality conditions on a conjunctive sequence.

The local optimality conditions concern interchanges of filter order, deletion of redundant filters, insertion of

redundant filters, and concurrent execution of filters. Surprisingly, we will prove that with a general cost model,

most forms of concurrency are not desirable with information filtering, since the earlier starts of the concurrent

filters do not compensate for the increased input they must handle. Section 3 will show results of experiments

confirming the value of our local optimality criteria, and in particular that a simple "greedy" algorithm based on

them has excellent average performance.

We then generalize our results to arbitrary boolean expressions involving filters in section 4. Disjunctive

sequences are just the duals of conjunctive sequences, and negations are relatively straightforward in their

optimality implications. Factoring of conjuncts over disjuncts and vice versa leads to an additional local

optimality condition, but one that we argue is unimportant in most applications.

One important application of signature matching is to supporting natural-language processing in information

retrieval. Many researchers in information retrieval have pointed out the deficiencies of raw keyword matching
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(e.g. [16]), and parsing and semantic interpretation of natural-language data descriptions could be a solution.

The main obstacle is speed. Depending on the approach, the required parsing, semantic interpretation, and

semantic matching could take minutes where keyword matching requires seconds. But if we can decompose the

required processing into several filters, we may be able to rule out most potential data at an early stage, without

full natural-language processing of their data descriptions. We discuss this in section 5 of this paper, and our

theory permits us to improve the MARIE system [21], which pioneered in the systematic use of natural-language

captions on multimedia data as the primary indexing of the data.

2. General analysis of conjunctive information filtering

Suppose we have m information filters through which some data items must pass; that is, each data item must

pass the test administered by each filter. Let the event of passing the filter be termed i. Assume each filter

has an average cost of execution per data item of c, and an average a priori probability of passing the data item

of p(f5 ), where O<p(fi)<l to avoid considering trivial cases. Generally the ci will be execution times so as to

find the minimum execution time of a filter sequence, but our mathematics here applies to any costs. Assume

that the cost of testing whether an item passes a filter is a constant independent of the success or failure of the

test; this is true of table lookups, for instance.

If the filters are applied in sequence, the expected total cost per data item will be:

tl.. = C1 + C2P(f 1) + c3P(f 1A1 2) + + cp(f 1 f 2 ... ,,-) (1)

We would like to choose the filter sequence that minimizes t1,,. for a set of m filters, or know if possible dele-

tions of filters could improve cost. The parameters c and p can be estimated either from past statistics of the

filters on similar problems, or by random sampling of a small fraction of the database and applying the filters to

it.

Related problems to the finding the optimal conjunctive sequences have been examined elsewhere. In the data-

base literature this is the problem of restriction-order optimization based on selectivities (called a ."single-

variable" optimization in [15]), but the focus there has been on solving the more critical problem of optimizing

joins and other operations that generally are far worse bottlenecks in processing time for databases. The usual



".5-

methods require search, either exhaustive or heuristic, in the space of possible reangements of a query expres-

sion, rather than attempting to find general optimization criteria. Work in semantic query optimization for data-

base queries sometimes suggests signature-table methods [231, though it is usually concerned with application of

mome complicated "integrity constraints". In artificial intelligence, (251 analyzed optimization of filter sequences

that create persistent variable bindings, a different problem but related to the one above. Work in Markovian

decision processes [17] has developed general methods for situations more complicated than sequences, but these

are not very efficient for sequences. Work on optimal decision trees assumes all c, terms are equal, which leads

to specialized algorithms. Problems of task scheduling that are related to conjunctive-sequence ordering are

generally NP-complete [91 because generally we must to examine some constant fraction of all possible

sequences in order to find the optimal one. But in this paper, we will propose some quick polynomial-time cri-

teria that can be used to rule out all but a few possible sequences, as for instance criteria that sort the sequence.

While these criteria are not guaranteed to find the optimal solution, they usually do, as we have confirmed by

experiments, and furthermore they usually greatly improve the average-case execution time of the sequence.

2.1. Local criteria for interchange-optimality of the cost of a conjunctive filter sequence

First, consider the effect on cost of interchanging filters in a conjunctive sequence. If a sequence is a local

optimum with respect to cost, then any such interchange must not decrease the total cost. Consider the effect of

interchanging adjacent filters i and i+l. This certainly cannot affect the cost terms for terms before i, and it

cannot affect the cost terms for terms after i+l because f 1Af2=f2N 1 I. So the interchange of filters i and i+l

will not improve cost if:

cip(Yf 2A ... fil)+ci+Lp (f Af 2A f... Afj) - ci+lp(f 1Af 2A ... fi-.)+cip(f IAf2A• .. fi-,Ifi+l)

or, after converting to conditional probabilities which represent the "value" of each filter.

c,+C+P Vi V 11V 2A .. Sc. fi05C~ ciP (fi+ V 2A. . .1

we then get after reaamnging:

ci/I[l-p (fi If AN2A f.-.)] ci+111[l-p (fi+1 If A 2A "... f.-)] (2)

In other words, a locally optimal sequence must be sorted by c/q, where q is the fraction of the items failing

this filter after passing all previous fiters. We call this "interchange optimality".
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Often we can assume that filter-acceptance events f, and fi+1 ae independent of all the previous filter-

aceptance events. Then the conditional probabilities become the a priori probabilities p (f, ) of a random data

item passing a filter i, and we get (Theorem 1 of [14]):

ci1(l-p ¢fd•))5 c,÷•/(1-p (fA ÷) (3)

2.2. Entailing and entailed filters

Unfortunately, we cannot often assume independence of filter pairs because the whole idea of signature matching

is that anything that passes full matching will also pass the signature matching. Hence the conditional probabil-

ity for the signature filter passing a data item that the full-matching filter passes is 1. We will call the signature

filter the "entailed" filter, and the full-matching filter the "entailing" filter. We will assume that entailment, or

conditional dependence of the probability of filter success, is always absolute if it occurs at all. Filters usually

can be designed to accomplish this, though it should be noted that if f 3 entails f I and f 3 entails f 2, then f I and

f2 cannot be completely independent, although they could very near independence.

With an entailing filter e, p (f, lu)sp (f,) where u represents the situation of passing all the previous filters

before e. But we can use Bayes' Rule. Suppose u can be broken into two pieces such that u =u jAu 2 and u 2 is

the largest subset independent of f.. Then:

p (f. lu)= V.I)=p~f l f(f ,)1p (U 1) (4)

To obtain p (u 1) if all the filters in u I are independent, multiply their probabilities. Otherwise, since entailment

is absolute when it does occur, eliminate the probabilities of filters that are entailed by others in uI and then

multiply the rest.

For instance, if filter 7 entails filters 3 and 4 but is independent of four other preceding filters, and the a-priori

probability of passing filter 3 is 0.4, of passing filter 4 is 0.5, of passing filter 7 is 0.1, and filter 3 is near-

independent of filter 4, P(f 7fV " ... " P 6)=0.1/(O4* 0.5)=0.5. If filter 7 is then followed by a filter 8 of the same

cost but with an independent success probability of 0.6, filters 7 and 8 should not be interchanged in search of

local optimalty.
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Anodter consequence of our asumption of all-or-none dependence between filters is that p (fi lu) is only

different from p (f,) when it is an entailing filter, and then it is only a function of its entailed filters. But

entailed filters must precede all their entailing filters in a given filter sequence to be useful. So p (f, Iu ) will be

a constant for all sensible placements of an entailing filter f, in a filter sequence. Hence inequalities (2) and (3)

are sorting criteria for a bubble sort on the filter sequence. Hence if we bubble-sort using interchange optimal-

ity, and the resulting sequence also obeys entailment relationships, we have found the optimal order for the

sequence in polynomial time with respect to the number of filters. If the sort result does not obey entailment

relationships, we must try something else. Section 3.1 discusses what else we can do, and gives an important

theorem for this situation.

Note that even if entailment is not all-or-none, result (2) can still allow sorting of a filter sequence if the varia-

tions in the conditional probabilities p (fV If ... Af/.i- 1) are sufficiently small with to assign a consistent place to

any fi in the sequence.

2.3. Deleting entailed filters

Entailed filters must come before their entailing filters or else they are useless. There is now a new possibility

for improving filter-sequence cost without changing the answers it produces: deletion of an entailed filter.

Assume first that there is only one entailing filter and only one entailed filter. Assume the entailed (fast) filter is

i and the entailing (slow) filter is e. As with interchange, the deletion cannot affect the cost terms before i. It

cannot either affect the cost terms after e because filter e will rule out an item regardless of how much assis-

tance it gets from filter i. So deletion of filter i does not improve cost if:

ciP (f A" ... f i-l)+ci+jp (f A" ... f i-l/Xfji)+Ci+2P (f A/X "" f - ~f l/V1f j+l)+" " " +c~p (f A" ... f .- I)

< c+ 1p(fj1A- f 1_j)+cp+ (fjA" .. f1-iSYf+l)4- '- +c~p (f .A...• fi-i1fi+1 ... f.-I)

or 2fter introducing conditional probabilities:

ci+ci+lp(fj Vfi *• Af*-i)+ci+2p (f1IVj+1If I .. • fi~-)+ - - • +c~p(fi ... Af/.--If 1A." fi-) (5)

< ci++ci+2p (f+i If VA ... fi-,)+.• +cap (f+j " ""f,1- If 1A ... fi-1)

We call this condition "deletion optimality".
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If we can assume that passing of filter fi is independent of passing all other filters fI from j=l to e-I we get

after rearrangement"

ci/(l-P(fi)) 5 ci++ci+2p(fi+l If A ... fi)+•• +cp (fi+.1 " Afg-I If A fi-1) (6)

Note that the right side is just ti+,, in the notation of equation (1), or the expected cost of the filter sequence

fi+lo fi +2, ...9 fe by itself.

Another way to simplify (5) is to note that p((fiAr)IflA... fi-i) 5p(r If A f1.-1), and we can use this to

match each pair of the last e-i-I terms on the left side and the right side. Then eliminating each pair, we get a

simpler sufficient condition for (5) to be true:

ci/[l-p(fi If VA " "i-1)] : ci+l (7)

Note that condition (7) for filter i implies the interchange optimality condition (3) for filters i and i+1, since

Ci+i<ci+ll(l-P (fi+l))"

2.4. Deletion of more than one entailed filter

A question arises about deletion optimality: Even if filters i and j are individually deletion-optimal in a particu-

lar filter sequence, could the deletion of both of the them be locally optimal? The following definitions and

Lemma will provide the criteria for such stronger forms of optimality.

--A filter that is not entailed is "strongly-deletion-optimal". An entailed filter i is strongly-deletion-optimal if

condition (7) holds, ci/(1-p(fi If I • • * i-d)) < ci+1 , and if at the same time ci+_<icj for all i<j<_r, where r is

the next non-entailed filter after i if any, else the last filter.

--A filter that is not entailing ,s "strongly-interchange-optimal" f it is interchange-optimal by (2) with respect to

all other filters. An entailing filter i is strongly-interchange-optimal if c j(l-p (fj If I ..f . /vjl))

< c1(l-p (f 1)),for all r:j<i where fj is not entailed by fi and where r is the last non-entailed filter before i.

Lemma 2.1, Subsequence Deletion Suboptimality Lemma: Given a set of filters in which every filter pair is either

probabilistically independent or else one filter in the pair entails the other. Suppose filter i in some sequence S

is strongly deletion optimal. Then strong deletion optimality of the filter originally at position i must also hold
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for any subsequence created by deleting items besides i of S. Proof: If filters deleted from sequence S occur

after 1+1, they do not affect either side of (7), so it still holds. If filters deleted are independent of filter i, they

cannot affect either side of (7). If a filter j before filter i is entailed by i (i could not entail j for the sequence

to make sense), and j is deleted, the conditional probability can only decrease since p(f, Ib)<p(fi IbAc), so (7)

still holds. The only remaining case is when filter i+1 is deleted, and some filter j to the right of it now fol-

lows i in the sequence. Then if ci+,<cj for any filter j that could become the next filter after i by deletions,

then (7) holds for the new filter. We only need to consider filters up to the next nonentailed filter, because that

one cannot be deleted. QED.

We can use this lemma to get sufficient conditions to say that a filter sequence is the globally optimal one with

respect to interchanges and deletions. The conditions require only polynomial time to confirm. This result

applies to an important class of problems, and filters can be purposely designed to make global optimality easier

to guarantee.

Theorem 2.1, Restricted Global-Optimality Theorem: Given a set of filters in which every filter pair is either

probabilistically independent or else one filter in the pair entails the other. Assume in some filter sequence S

that every filter is strong-interchange-optimal, and every entailed filter is strong-deletion-optimal. Then S is the

global optimum in the space of improper subsequences created by deletions from it and permutations of it.

Proof: By Lemma 1, any subsequence T created solely by deletions (with no interchanges) must also be strong-

deletion-optimal. Since each T can be created by a single deletion from another strong-deletion-optimal

sequence S, no T can be the global optimum because it is more costly than its S.

But sequence permutation could improve the cost. For this, we need only consider the moving left of an entail-

ing filter E because (a) entailing filters are the only ones whose interchange optimality is affected by deletions.

and (b) their ratio cl(l-p) will be decreased by deletions of leftward filters, so they may need to be moved left

to put the sequence back into sorted order on c/(1-p). However, if strong-interchange-optimality holds, inter-

change optimality cannot hold with the new left neighbor of E no matter where E is moved. Furthermore, if

strong-interchange-optimality holds with all filters left of E through the first non-entailed filter, deletions of any

of them cannot affect the strong-interchange-optimality of the remaining filters because p(fj)-p(f, Ifk). QED.
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Note two important cases to which the Theorem applies: if there are no entailed filters in a sequence, or if one

entailing filter entails all the others (as in "multi-level" signature matching [4]).

The conditions of the Theorem require only 0 (m 2) operations to perform, m the number of filters, while at the

same time pruning a possibly exponential number of possible permuted subsequences. So a good heuristic for

finding an optimal sequence for a set of filters is to first interchange-sort the filters, then check if the conditions

of Theorem 1 hold; if they do, you have the global optimum and are done. Theorem 1 can also rule out from

consideration subsequences of the original filter sequence even when it does not apply to the original sequence.

2.5. Inserting entailed filters

Another way to improve the cost of a sequence is to insert a filter redundant with respect to an existing filter,

before that latter filter. (It makes no sense to insert a nonredundant filter, as without such a filter, the final out-

put of the filter sequence will be different.) This is the exact opposite of the case in the last section, so we just

reverse the direction of the inequalities for local optimality, with the proposed insertion filter as the filter i. A

way to rule out insertion-optimality is to find another sequence consisting of the given sequence plus one extra

filter, where me extra filter is deletion-optimal. This is straightforward to accomplish if filter sequences are con-

sidered in order of decreasing size.

2.6. Distributed flltering

So far we have only considered sequential implementation of a conjunctive filter sequence. A distributed imple-

mentation could assign each filter to a processor, send each filter processor each data item, and have all the pro-

cessors send the data that passes their tests to a single "intersection processor" that finds items that passed more

than a threshold number of filters. There arm two problems with this approach: the intersection processor is a

bottleneck, and the degree of parallelism in the first phase is limited by the number of filters which can be dev-

ised. More sophisticated information-retrieval systems today allow boolean expressions with embedded condi-

tions instead of keyword lists. A similar distributed approach can also be followed but with a more complicated

final aggregation step, and hence an even worse bottleneck.



Anodter approach is to assign to sets of data items to processors, which is possible on a massively parallel com-

puter. [27] expred this idea on the Connection Machine, a massively parallel machine with 64,000 processors,

with each processor independently comparing keywords with its own associated item or items. The keywords in

sequence were supplied to all processors simultaneously, and each processors counted the number of matches for

each data item. At the conclusion of this, processors were polled to get the answers. This approach can get

answers very fast, and the speedup should be almost linear with the number of processors used. But this mas-

sive parallelism also means massive idleness: Usually most data items do not match the query, and their proces-

sors just sit uselessly. So this approach is very wasteful of computer resources, something which is hard to jus-

tify fcr a non-critical application like information retrieval and a multi-million dollar machine like the Connec-

tion Machine. Instead, we will explore partition of the data items with a significantly lower degree of parallel-

ism, an approach that could work for networked workstations.

2.7. Data-partition parallelism

Suppose we have N processors that can help execute the filters, where each processor filters a randomly chosen

disjoint partition of the input set. Each would first apply filter I to its partition, then filter 2 to the output of

filter 1, etc. Assume that the cost of applying a filter to a set of data items is proportional to the number of data

items; this is true for most filters, including signature table methods as well as the natural-language processing

filters discussed later in this paper. Then without overhead, each filter will execute N times less time. Other-

wise, we can assume that overhead cost is proportional (with constant ko) to the number of processors used. So

the total cost of doing a sequence of filters with data-partition parallelism is koN+(cIN )+pV dC 21N)+•

which has a minimum with respect to N at:

Nw-'(I/k0 )(c1 +p fi)c2+• • ) (6)

This must be rounded to an integer, so this true optimum is usually only approached.

Usually this is a large number, larger than N, since k, represents the time to send simple messages to other pro-

cessors, which is usually much faster than executing filters themselves. Then since the derivative of the cost is

negative for N<N4,,, the minimum occurs at N, and it best to use all N processors. This is only different for
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filters that ae all very simple, with hardware that poorly supports message passing, or situations with a large

number of available processors (something difficult to justify for information retrieval). And with a sequence of

filters, the setup cost k.N need only be incurred once because each processor applies the data to each filter in

turn, so its cost can be amortized; and the final union of results is just a disjoint union, easy to accomplish.

But we need not assign all the processors to the same filter at the same time. We could assign some of the N

processors to one filter and the remainder to another filter. Surprisingly, we can prove this is never desirable,

under a few simple assumptions.

Theorem 2.2. Parallel-filter Theorem: Suppose we have N processors to implement two information filters. Sup-

pose the cost, per unit number of data items, of n processors doing a filter i is g (n )+(c, In), g (n) a

communications-cost function (covering the processor setup and result-list intersection for the parallel process-

ing), and c1 the cost of the filter per data item as above. That is, we decompose cost into a linear-speedup term

and an overhead-cost term. Assume g"(n )SO and g (O)=O (concavity would reflect economies of scale in invok-

ing processors). Then it is best to apply all N processors to one filter, then all N processors to the other filter.

Proof: Suppose we do assign n I processors to filter 1 and N-n I processors to filter 2, where n 1<-N. Then exe-

cution lime for just the two filters plus overhead will be g (nl)+g (N-n l)+max((c l/n l),(c 2/(N-n i))). As a func-

tion of real n1, (cllnl) is monotonically decreasing and (c 21(N-nl)) is monotonically increasing. Hence the

minimum of the max term will be when c11n1=c21(N-n 1), or when n1=Nc1I(c1+c2), at which value the cost

attains a minimum of g(Nc l(cl+c2))+g(Nc21(cl+c2))+((cl+c2)/N). On the other hand, if all N processors are

assigned to perform filtering operation 1, then filtering operation 2. the cost of the two filters plus overhead will

be g(N)+(cIN)+(p c21N) where PI is the probability of passing filter 1. If we ignore the overhead terms, the

parallel-filter (first) approach cinnot be preferable since that would mean (c 2IN)<(p1c 21N), which is impossible

since p1<l. Considering just the overhead terms, the parallel-filter approach's g terms would only be preferable

if g(n)+g(N-n)<g(N) for some integer n, O0n:V. But this is impossible because g"(n)_<O, so

g (V/2)-(g (0)+g (N))12--0.5g (N) and g(n )+g (N-n <g (O)+g (N). Hence we have shown that both filter cost and

overhead cost are inferior for the parallel-filter approach.

The above analysis is actually conservative. Note that to implement parallel filtering, we must round from
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Nc 1 (c I+c2) to an integer, this can only worsen the cost further. Furthermore, the above results assume that

with sequential filtering, all N processors do filter 1, then all N do filter 2, etc. But if, say, processor 6 finishes

filter I early, it could sta applying filter 2 to its results of filter 1, before processor 5 finishes filter 1. This

interleaving effect is data-dependent and hard to analyze, but could only be better without parallel filtering,

because then each processor does each filter and there are more opportunities to finish early and do the next

filter. QED.

The following corollary generalizes this result on two filters to arbitrary execution plans involving parallelism

for a set of filters.

Corollary 2.1: Given an execution plan for a set of Jilters on N processors, expressed as a directed acyclic

graph with each node marked as to which filter and which of N subdivisions of the data to which it applies, and

where a filter can appear more than once. Suppose the cost, per unit number of data items, of n processors

doing a filter i is g (n )+(cIln), g (n) a communications-cost function (covering the processor setup and result-

list intersection for the parallel processing), and ci the cost of the filter per data item as above; and assume

g "(n )*0 and g (0)=O. Then if that execution plan has different filters in parallel anywhere, it is not optimal.

Proof: Such an execution plan could be transformed into a sequence of filters by repeatedly taking a pair of

parallel strands and sequencing them arbitrarily. Then if we reverse the order of these ": - formations, we will

get the original execution sequence. But in this latter process, Theorem 2 applies at every step, so the original

execution plan cannot be optimal even if the completely sequenced plan is optimal. Furthermore, if a filter

appeared more than once in the original execution plan, it will appear more than once in the completely

sequenced plan, so that plan cannot be optimal anyway. QED.

As an example of the Corollary, suppose we have three filters f 1, f 2, and f 3. Then putting f I in parallel with

the sequence of f 2 followed by f 3 cannot be optimal because the last two can be considered a composite filter.

Similarly, suppose we do f I then f 3 on one parallel track, f 2 then f 3 on another, where the starting time of f 3

on the first track could be different than the starting time on the second; then sequencing would have each filter

once plus f3 twice, which is worse than just having each filter once.
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2.. Parallel nonm-ltering processes

Information-filtering applications can require additional non-filtering processing. In natural-language information

retrieval, for instance, parsing and interpretation of the natural language is necessary before detailed matching

can be done. The effect of such processes can be modeled as imposing earliest start times for all the processes

that depend on them. This introduces additional inequality constraints of a more traditional sort into our

scheduling problem.

We can handle these constraints in the standard manne of optimization theory. If the local optimality condi-

tions can be satisfied without violating the new start-time constraints, the local optimumn remains a local

optimum. Otherwise, the local optima must be on the border of the region of feasibility with the minimum

number of *active" constraints (inequalities reducing, to equalities). That means that any local optimum of the

new problem must satisfy interchange optimality and local deletion optimality except in the minimum number

places necessary to satisfy the start-time constrainL Standard algorithms can solve such problems.

2.9. General algorithm for sequence optimization

We can now provide a general method for filter-sequence optimization. First, sort the filters for interchange

optimality. If Theorem 2.1 applies to this sequence, and it obeys dependencies, it is the global optimum. Other-

wise, rearrange to satisfy the dependencies, and conduct a branch-and-bound search: Consider possible subse-

quences of the sorted filter sequence created by deleting entailed filters that are not strongly-deletion-optimal and

resorting to preserve interchange optimality. Any such subsequence that satisfies Theorem 2.1 and dependencies

represents a local optimum for the original sequence of filters, and furthermore none of its subsequences can be

a local optimum. Then if N processors are available, assign all N for each filter in turn if N<Nlr, otherwise

use Nbt,. This algorithm has exponential time complexity in the number of filters because of the possibly

exponential number of combinations that must be considered, but it is simple and works.
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3. 3xu emU wih ruadwm data

Analysis of filter execution plans can vary greatly in difficulty depending on the parameters of the filters

involved. To better judge the number of local optima and how often the global optimum is easy to find, we

conducted experiments with randomly generated filters. Given a particular number of filters to create, we ran-

domly designated certain ones as entailing filters, and randomly chose some filters for them to entail. Entail-

ment relationships were restricted to form a forest, since signature-table filters do, and it is difficult and not very

useful for filter fA to be entailed by both filters fq and fc when f8 and fc are unrelated. Note that deletion of

a node from a forest and rerouting the children nodes maintains the forest property. (The forest restriction does

allow a filter fl to entail both fa and fc; for instance, fD could be a full match to the data item. fB a match

to its high-order bits, and fc a match to its low-order bits.)

Costs were randomly assigned to each filter from the uniform distribution 0 to 10. Filter success probabilities

were assigned from the uniform distribution 0.01 to 0.99; for nonentailing filters, this was taken as the a priori

probability, and for entailing filters, this was taken as the conditional probability given that all previous filters

succeeded.

Fig. I shows an example run with four randomly generated filters. The first argument to "filter" is the filter

number, the second its average cost, and the third its probability information. "Dep" means the filter entails

those listed, so filter 2 entails 1, and filter 3 entails both 1 and 2. There are four sequences of filter subsets that

satisfy interchange optimality and the dependencies. Of these, two satisfy deletion optimality criteria (more

often, only one does). The first is the true optimum, and the heuristic greedy algorithm finds it. Note how dele-

tion interacts with interchange optimality: Filter 4 normally should precede filter 3, but when both filters I and 2

are deleted, filter 3 becomes more valuable and must precede 4.

Fig. 2 tabulates experimental results which are graphically represented in Figs. 3-11. Each row of Fig. 2

represents 1000 randomly generated filter sets. The first column is the number of filters, the second the proba-

bility that a filter would be selected for possible entailment (although it would be ruled out if such an entailment

would violate the forest property), and the third the probability that a filter is entailing (that is, whether we
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should attempt to consmtct entailment relationships for it). The remaining columns show experimental results as

means of natural logarithms, with associated standard errrs in parentheses. We use the logarithms because they

are more appropriate for summarizing combinatorial experiments. The fourth column is the mean of the loga-

rithms of the number of possible subsequences that need to be considered, after interchange sorting, for each set

of randomly generated filters. The fifth column is the mean of the logarithms of the number of those subse-

quences that were judged locally optimal with respect to the criteria of section 2, a number generally consider-

ably smaller than that of the previous column. Note the values in the fifth column increase more slowly than

the values in the fourth column.

Fig. 3 plots the size of the search space, the total number of sequences n! for n filters, with the values displayed

in fourth column of Fig. 2; four assignments of dependency parameters are shown. Figs. 4-7 show these last

four curves plotted against the number of locally optimal sequences, the fifth column of Fig. 2.

3.1. A greedy agrithm

The sixth column of Fig. 2 shows the performance of a simple heuristic "greedy" algorithm to find the optimum,

in terms of the means of the logarithms of the ratios of the cost of the sequence found by the algorithm to the

cost of the Mie optimum sequence. This algorithm starts with the interchange-sorted (see discussion below) list

of filters, and successively deletes the best filter that it can (that is, the entailed filter whose deletion improves

overall cost the most after resorting), until no further deletion can improve cost. No backtracking is done. This

heuristic algorithm is O(m3 ), m the number of filters, since interchange-sorting is 0(mlogm), and there are

O(m) things to delete and hence O(m) steps; each step looks at O(m) subsequences and evaluates the cost of

each subsequence in 0 (m) time, then resorts in 0 (m) time to reposition one entailing filter. The heuristic algo-

rithm cannot get the optimal solution in every case of the general problem. But the sixth column demonstrates

that it nearly always gets the correct answer for up to fifteen filters, and its rate of deterioration is considerably

slower than the increases in the size of the problem space, the number of sequences considered, and the number

of local optima. Figs. 8-11 plot columns 5 and 6 of Fig. 2 against one another.

The greedy algorithm is supported by the following useful theorem that relates interchange optimality and



- 17 -

duliadn aptekality. This Ways tat we need only interchuep-sort the fiber set in order to check for a local

optimum If the imterchge sorting does not obey entailment relationships, it is not locally optimal.

Theorem 3.1: If a conjunctive fflter sequence is sorted so as to satisfy interchange optimality, using for each

entailing filter its conditional probability given all entailed filters are present, and this sequence violates entail-

ment relationships, the sequence is not deletion-optimal. Proof: Suppose a sequence is interchange-sorted so that

entailing filter f, occurs before its entailed filter fd, where d is the costliest in c/(l-p) of all such entailed

filters after e. Then C,(l--p(fV, u.))<Cj/(l--p(fdlud)). Now consider moving d before e in order to satisfy

entailment. Since d is the ratio-costliest of filters entailed by e and after e, it is also the ratio-costliest of all

filters entailed by e, and must go just before e to achieve the locally-optimal ordering of all sequences with d

before e. But with d just before e, the condition for deletability of d is that Cd1(l-P (fd Ud))>C,. But this fol-

lows from the original assumptions since c,<c.I(l-p(fI u,)). QED.

4. Disjunctions and negations

We now extend the previous analysis to filter execution plans that are equivalent to arbitrary boolean expres-

4.1. Ordering of disjunctions

We expect that disjunctions of filters will be rather rare, as conjunctions of conditions are more useful in infor-

mation retrieval. But in general, optimization of disjunctions is precisely analogous to (the "dual" of) optimiza-

tion of conjunctions. The following theorem generalizes Theorem 2 of [14] beyond independent filters.

Theorem 4.1: The problem of optimally ordering a disjunctive sequence of filters is equivalent to optimally ord-

ering a conjunctive sequence in which the costs are the same and the probabilities are mapped to their inverses.

Proof: If the filters are applied sequentially, then everything that fails the first filter is applied to the second

filter, and everything that fails both filters is applied to the third filter, and so on. The final answer is just the

appending of results from all filters, since this union is disjoint. Hence the cost formula is
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c 1+c2p Cf-',.+c pp Cf IKf 2)+ • , identical to that for conjunctive sequences except with the inverse probabili-

ties. But the inverse function f (x)=l-x is monotonic and has the same domain and range. So the problem of

finding an optimal disjunctive sequence has an exact "dual" problem of finding the optimal conjunctive sequence

for the inverse of the original probabilities. The solution to the latter found by the abovementioned methods

then maps to the solution for the former. QED.

Note that this also provides a criterion for deletion of redundant disjunctive filters, and implies that concurrent

execution of different filters in disjunctions is also not advantageous.

4.2. The distributive laws

If a filter expression includes both conjunctions and disjunctions, should we factor it (using the distributive laws)

to improve execution time? Surprisingly, the answer is an unequivocal "yes."

Theorem 42: With three arbitra.-y nontrivial filters, the execution plan f 1A(f2Vf 3) is preferable to the

equivalent plan (fIAf 2)V(f /If 3). Proof: Let u represent all events before f i is evaluated. The first execution

plan is better than the second if-

CI + C2 p (VIu) + c 3P(fV 1 f 2Iu) < C1 + C2P (fVIu) + cLP(Cf V'f 21u) + c3P(fV/Vf 2 1u)

which simplifies to O<cIPCf tVf 2lu), which is always true for nontrivial filters. QED.

Hence an additional local optimality condition for an execution plan involving both conjunctions and disjunc-

tions is that all possible factorings be made for conjunctions over disjunctions. A similar result holds for dis-

junctions over conjunctions.

Theorem 4.3: The execution plan f IV(f 2Af 3) is always preferable to the equivalent plan (f Vf 2 )Af 1Vf 3).

Proof: Similarly to the preceding, we get

CI + C2PCf Iu) + c•PCff 1A 2Iu) < ICI + cpC'f 1 0u)] + [cp(f1 Vf 2Iu) + c3pfi/f 21u)]

And all terms cancel except for the third on the right side, cp(fVIf 21u). QED.

Note that Theorems 42 and 4.3 do not require probabilistic independence. And the f, terms can be composite
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(or bo&i combiations of other fillers), so the result applies to the distribution of conjunction over more than

two disjunctions, and vice versa. But the above results do only provide local optimality conditions, because

some boolean expressions can be factored in more than one way. For instance, there re two local optima for.

(aMy4(aIc )V(b1N ) = (aA•bV))V(bAc) = (aAb)V((aVb)A)

However, this possibility can usually be safely ignored, since conjunctions are the most natural way to conjoin

nearly all filters; and when disjunctions do occur, it is unlikely that a filter must appear twice in any locally-

optimal execution plan, as is necessary above.

4.3. Redundancy elimination In boolean expressions

A special case of the distributive law is:

f iV(f 1q' 2) = (f l/rue )V(f Af 2) = f /(trueVf 2) = f I

The final expression must execute faster than the original expression because it is a subexpression. The other

"absorption" law is f /Vf IV 2) = f .

In general, all such redundancy-elimination laws of logic can be fruitfully applied to boolean expressions of

filter combinations. They include:

f q =f , f Vf =-f , f/1true =f . f Afalse =false, f Vtrue =true, f Vfalse =f

All these involve substitution of an expression requiring less work to evaluate.

4.4. Negations

Negation operators will complete a boolean algebra of filter expressions. Since filters always operate on a finite

set, it is helpful to think of the negations as being set differences on either the results of filters previously

passed, if any, or otherwise the full database. And we will automatically eliminate double negations from a

boolean expression.

We will assume that the negation of a noncomposite filter has the same evaluation cost as the unnegated filter.

This is true for signature tables and other filters wherein a similar calculation is performed upon every input data
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item, and the result used to decide if the item passes the test; more complex filters that do not fulfill this restric-

tion can often be decomposed into boolean combinations -f subfilters that do. Under this assumption, we can

prove that negations in a boolean filter expression should be pushed as far as possible inside expressions, so that

they all apply to single filters and thus can be evaluated at no cost penalty.

Theorem 4.4: Consider an equivalence class of boolean expressions such that any member of the class can be

transformed into any other member by some sequence of applications of DeMorgan's Laws. Then #f this expres-

sion is interpreted as referring to information filters, the globally optimal member of the class is that in which

every negation is of a noncomposite (simple) filter. Proof: There must be only one such expression, because the

laws above apply independently to each negation sign. Any other expression in the equivalence class must be

derivable by a series of applications of the "negation-factoring" forms of DeMorgan's Laws.

First consider f 1tvf 2 versus - Cf IVf 2). If u represents the previous context of the subexpressions, and fI and

f2 are simple filters, the first expression costs cl+p(f 1lu)c 2 , and the second costs c1 +P(fVIu)c2+C¢, where c.

is the "negation cost", the cost per data item of checking which items in a set do not belong to u. Hence with

simple but nontrivial filters, the first form is always better because all the terms are the same except for the

added negation-cost term in the second expression. Second. consider fIVf 2 versus -"(f 1 N-f 2). The first

"expression costs c1+P(Cf 1 u)c 2, and the second costs c1+p(-fIlu)c2+c.. Again, the second cost is worse for

simple nontrivial filters.

If f I and f 2 are composite in the above filter expressions, however, the transformation from the first form to the

second could decrease cost if fI and f2 are themselves negated expressions, in which case double negations

cancel. However, the cost calculation for the second form of each pair always adds at least one c. term. Hence

its cost is always worse than that of an expression in the same equivalence class with no c, terms in its cost, the

expression with negations pushed all the way inward. QED.

Besides DeMorgan's, a few other laws of logic that can help simplify an expression. Certainly f IANf l=false

and f iV'f =true awe desirable substitutions. But the "negative absorption" laws f 1 -f 1 Vf 2)=f 1/ 2 and

f IV(-f 11 2)=f Vf 2 are unnecessary since they just represent the way we execute filters.
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4. Siunaked a fmtng for bmt opthn a

Fig. 12 summarizes the main results of this paper so far. We have covered enough of the laws of boolean logic,

the propositional calculus, to generate all equivalent expressions to an arbitrary input expression, since we have

covered all those listed in [15]. The middle column shows that the first four classes of logical equivalences do

require sane cost and probability analysis; but the methods of section 3 will do this, and they are not hard. The

rightmost column shows that three of the seven classes of equivalences ve, possible problems for a "greedy"

algorithm which sequentially applies the best equivalence until it reaches a local optimum. These three are what

make the general problem difficult and probably exponential in complexity. However, results of section 3 sug-

gests that a polynomial-time greedy algorithm can get the right answer most of the time. If this is insufficient

assurance of optimality, simulated annealing can explore the search space randomly until some given level of

assurance is achieved. The necessary random transformations of the boolean expression can include all the

methods in Fig. 12.

S. Experiments with a natural-language processing-filter application

We now discuss a specific filtering application to which we have applied our theory. This application illustrates

a number of subtleties in the use of filters. It also is valuable in its own right, as one of the easiest ways for

users to access multimedia databases. The idea is provide information retrieval of multimedia data with

natural-language (in our case, English) questions as input. Examples of this approach are [13] and [22] and the

more complicated ideas reviewed in [23]. Natural-language processing poses a good challenge for filtering ideas

because it can require much time, yet it is not so slow as to fail to benefit from a modest improvement in

efficiency.

We wish to improve our earlier MARIE system [21] with the ideas of this paper. The goal of MARIE is to take

as input a English noun phrase representing a query, and return as output the multimedia data items that match

the meaning (as opposed to literal words) of the query, doing most processing with the pointers to those data

items and not the items themselves. The domain of MARIE is captioned photographs in the Photo Lab of

NAWC-WD. China Lake, California. The conceptual units of the improved MARIE will be:
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1. Coarse-grain matcher (C): a keyword match of nouns in the English query input to caption nouns,

using index files [21]. It returns a set of pointers to media data items. This process must use a type

hierarchy to be truly helpful, as observed in [6] and [26].

2. Parser (P): a natural-language understanding system that parses English query input and creates a

meaning Hist, its logical form [21]. We assume input and captions exhibit "conjunctive semantics" [11

where the meaning of the whole is the conjunction of a set of logical expressions that define the meaning

of the parts, a usually reasonable assumption.

3. Registration-data tester (R): a formatted-condition processor, like those in database query languages,

that returns pointers to data items matching registration-data (formatted non-caption) conditions in the

query input. Registration data at NAWC-WD includes date, location, photographer, type of film, and

security classification. This tester was implemented for this paper using a main-memory database.

4. Picture-type matcher (T): a process that identifies the possible broad classes to which a media datum or

a query can belong (like "test" or "historical" or "public relations" for photographs), and rules out media

data whose classes are incompatible with the query classes [20].

5. Fine-grain matcher (F): a graph matcher that checks whether the query input graph (representing the

query meaning list) is isomorphic to some part of some caption graph (representing the caption's meaning

list) (21]. Like the coarse-grain matcher, this needs a type hierarchy, and it also needs a part-whole

hierarchy. It helps to separate this from the coarse-grain match, as did [7, 18], since it requires combina-

torial analysis and can be much slower.

Fig. 13 shows the dependencies between the processes. Each of these can be a separate process on a separate

processor, input and output queues can enable asynchronous communication. Items 1, 3, 4, and 5 are conjunc-

tive information filters as we defined them in section 2; and item 2 imposes a minimum start-time constraint on

4 and 5. Two additional filters that could also be added are an automatic "content-analysis" filter that analyzes

the media data for things and relationships displayed within, and the human user who accepts or rejects what the

computer eventually supplies. We could also add separate filters for additional textual, audio, and video aspects
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of a daum, if tme could be analyzed separately.

S.1. Mathematical analysis of the four MARIE filters

We can exhaustively consider all possible orderings. Entailments can be summarized:

--C-R. independent, following argument above

--C-T: approximately inde.endent (two different kinds of reasoning)

--C-F: first entailed by second

--R-T: independent (they examine different sorts of data)

--R-F: independent

--T-F: first entailed by second

Then the only possible filter sequences obeying dependencies are:

4-filter. CRTF, CTRF, RCTF, RTCF, TCRF, TRCF, CTFR, TCFR

3-filter: RTF, CRF, TRF, RCF, TFR, CFR

2-filter: RF, FR

We randomly chose 230 captions from the NAWC-WD Photo Lab database. We used 44 test queries, 42 sup-

plied by the Photo Lab personnel as typical of the queries they receive everyday, and two longer queries from

[201. We obtained average CPU times per data item (in seconds) ar.d average success probabilities in experi-

ments with an implementation in Quintus Prolog on a Sun SparcStation. These parameters, plus the ratios

r1=cj/(l-p8 ), are:

cc=0.0102, pc-4.0305, rc=0.0105

cR =0.000602, pR =0.958, rt =0.0144

cT=0.000 2 3 6 , pT=0.74 9, rT=0.000 9 39

CF=3.11, pF =0.421 (conditional on C and T), rp=5.37

Note how a redundant filter can still be highly useful: Coarse-grain rules out an average of 97% of the database

in very little time.

If we could ignore the parser (as when certain queries are common, and their meaning lists stored in advance),
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the interchange sort of these four filters would be TCRF (picture-type matcher, coarse-grain matcher,

registration-data tester, and fine-grain matcher). This order satisfies the dependencies. It would also satisfy

deletion optimality since 0.000939<0.010. for deletion of T and 0.105<0.00602+(0.958* 3.11) for deletion of C.

C would be strong-deletion-optimal since it is not followed by an entailed (deletable) filter; T would be strong-

deletion-optimal because 0.000236<0.0102. F would satisfy strong interchange-optimality because

0.000602<5.37. Hence TCRF would be globally optimal.

But the parser imposes an minimum time for T and F from the start of processing. The parser is going to be on

the critical path for the optimal execution plan, because even if C and R are done sequentially while the parser

is executing, 230* (0.0102+(0.0305* 0.00602))=2.39 is the expected time for the sequence C-R, and we obtained

an average of cp=3.76 seconds for parse CPU time for the 44 queries. Hence the parser and F will be on the

critical path (F cannot be deleted), and must occur in that order, if T occurs, it must be between the parser and

F because of the dependencies. T must occur because it is strongly-deletion-optimal, since 0.000236<3.11.

Hence the critical path is parser-T-F.

As for parallelism, the parser cannot be decomposed into parallel tasks as currently implemented. And parallel-

ism is of no advantage to C and R because they are not on the critical path, even if they are taken sequentially.

So execute sequentially C-R on a processor to run in parallel with the parser. As for T and F, we must estimate

the overhead of parallelism. We conducted experiments with the Quintus Prolog communications package TCP

using 1, 2, 3, and 4 processors for the fine-grain matcher. In these experiments, we observed no statistical effect

of the number of processors on overhead cost. So we fit cost to the formula ko.+(cFIN) for the cost of distribut-

ing fine-grain over N processors, and estimated k,=0.4 as the amortized overhead per data item. Hence T and F

should be allocated the maximum number of available processors each, and all of T's executions must precede

all of F's executions, following Theorem 2.2. Fig. 12 summarizes the optimal execution plan.

To confirm the reasonability of the cost estimates, we conducted further tests. Among other things, we meas-

ured real time to the nearest second for execution of the four filter sequences CF, CTF, F, and TF on a Sun

SparcStation. We measured real time to be sure to include all the factors that affect execution time, but the

workstation used a fileserver that serves other users, so our measurements are not precise. In 42 queries of the
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previously supplied 44 (two of which showed new bugs and were excluded), the observed ratio of real execution

time fir F to IF was 1.18 with a standard deviation of 0.43, versus a theoretical ratio of 1.33; and the ratio of F

to CF was 22.1 with a standard deviation of 17.3. versus a theoretical ratio of 29.7. The observed ratio of real

execution time for CF to CTF was 2.20 with a standard deviation of 1.50, versus a theoretical ratio by our above

methods of 1.33; the data was in the form of small integers averaging about 20, so this measure was more crude.

In these same experiments, F was never faster than CF and TF was never faster than CTF, as predicted by

theory; and F was faster than TF as predicted in only 9 out of 42 cases, and only slightly faster in each of the 9.

These results are confirmation of our theory considering that our method of parameter estimation, by averaging

over all queries, biases performance toward the few queries with many answers.

5.2. Scaling up the database

The MARIE system was just a prototype implementation that handled a random sample of 1/166 of the entire

NAWC database, which at the time of the sample was 36,000 captioned data items. We can use the preceding

analysis to predict the optimal execution plan when MARIE is applied to the full database.

The total time to do fine-grain matching and picture-type matching should increase by 166 since each match is

independent and there are no economies of scale. Registration-data testing will be close to 166 times slower

because it is best implemented with indexes, and the indexes will be 166 times longer on the average. Coarse-

grain matching will be dominated by the intersection of lists 166 times longer on the average, so it will also be

close to 166 times slower. Only the parser will remain ntarly the same speed, since the grammar it handles is

nearly a complete grammar for the remaining captions, and most of the parse time is in fetch from a hashed lex-

icon, backtracking among grammar choices, and reasoning about lexicon information for words, activities not

affected by the size of the database.

That means the effective time cost for the parser is reduced to 3.76/3600)0O.000104 per data item. This still

rules out the sequence TCRF which was optimal without considering the parser, but still allows the sequences

CRTF, CTRF, RCTF, RTCF, CTFR, RTF, CRF, RCF, CFR, RF, and FR. Deletion optimality is not affected by

the inclusion of the parser, so we need only consider the four-filter sequences CRTF, CTRF, RCTF, RTCF, and
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CTFR. The optimal solution when a single inequality constraint is imposed upon a problem is one in which the

inequality constraint is "active" or at the border of infeasibility, which means T must be second in the sequence,

leaving only CTRF, RTCF, and C'FR as possibilities. But in the second of those R precedes C, and in the third

of those F precedes R., both of which are inconsistent with interchange optimality. Hence sequence CTRF is the

optimal one, with the parser in parallel with C. As before, there is no benefit to putting any of the filters in

parallel with different filters, but there is an advantage in data-partition parallelism on each filter. So the

optimal execution plan with N available filters is to put 1 processor on the parser in parallel with N-i processors

on C, then N processors on the sequence TRF on different random partitions of the database.

53. Other modifications of MARIE

Our approach also permits straightforward analysis of several interesting hypothetical modifications. If the

parser finds natural-language input to be ambiguous, alternative meaning lists can be generated. Then the T and

F processors can execute a disjunction of the alternatives, using the methods of section 4.

Another idea is to split the coarse-grain filter into separate filters for each noun of the query. The current imple-

mentation uses a single heap structure for all input nouns, but a simpler implementation would load and intersect

index files, finding captions belonging to each of a set of index files (assuming an exact match to the query is

desired). Then large index files have both a high cost and a hbh probability of success, hence a high ratio

c/(l-p). Hence if we partition the coarse-grain matching into sepa- ,e filters for each noun, the filters should be

sorting by increasing frequency of noun occurrence. This may mean that other filters like R and T can now be

interleaved with coarse-grain filters, and placed before filters for high-frequency nouns (like "view" and "test" at

NAWC-WD).

Yet another idea is to trat the user as another filter, as we suggested earlier. The user will examine data items

supplied, and will accept some of them. We can assume that any user knows better what they want than any

automatic filter, so this user "filter" U entails all the others discussed; but to maintain a tree structure for entail-

ments, U must only directly entail fine-grain matching (F). Since F must go last without this user filter, U when

present must be last. The only question then is deletion optimality of the filters. The deletion of C or T cannot
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affect U because they ae "buffered" by F. The deletion of R is pragmatically impossible to affect U because

r5 =0.0144 in the current MARIE implementation, which is far less than the time it would take a human to

assess the relevance of a picture. The deletion of F is only desirable if 5.371N>cu, N the number of processors.

Thus if time of the user to confirm answers is the only cost criterion, we should only delete F if the user aver-

ages less than 5.37/N seconds to assess a picture; if other criteria were included in the cost like bother to the

user, this threshold would decrease. If F should be deleted, then we can next consider deleting other filters, but

their values of the ratio r are so much lower that it is pragmatically impossible for this to be desirable.

5.4. Further capabilities with a mixed query language

Beyond the capabilities just described, we have implemented for MARIE an enhanced query capability in a

SQL-like format, allowing arbitrary nesting of boolean expressions, including possibly multiple natural-language

strings and multiple registration-data restrictions. The methods of sections 2 and 4 can be applied to these

enhanced queries. Our query language adds an additional comparator "MATCHES" to SQL, to initiate natural-

language processing and semantic matching. It does not handle joins, however, since we believe that good cap-

tions and a good type hierarchy can eliminate most need for them in multimedia databases. The availability of

such a "mixed" query language with both conventional SQL and natural-language-descriptor features means that

the natural-language processing does not need to handle complicated scoping rules for quantifiers like "not",

"or", and "all", which can be very tricky to analyze in English, since the user can express such distinctions with

the formal part of the query language. Programmers can use our modified SQL directly, but we also provide a

graphical interface for naive users that permits structured query formulation.

6. Conclusions

We have explored a new approach to information retrieval, the concept of information filtering. Our approach

has focussed on the system aspects of filtering rather than the details of the filters, and our work should nicely

complement the results on filter design provided by classic information-retrieval methods and work on

signature-based retrieval. Our approach has been mostly analytical, providing local optimality criteria for filter
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execution plans. Thus it contrasts with work on query optimization for database systems, for which the search

space is so difficult to analyze that methods must be either exhaustive or heuristic; our local optimality criteria

are considerably more sophisticated than the "cheapest-first" heuristic often used there. Information filtering thus

appears to be a special case of general database retrieval that has special exploitable properties for improving

efficiency. The methods we have proposed will be particularly useful for the design of multimedia information-

retrieval systems, for which conceptually distinct filters can easily be derived.
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ime 4V pa. pvob. hit
fibmr O"Wl mmufte size of space RNumer qofptia cost ratio

3 0.2 0.2 0.0534518(0.0188046) 0.0138629(0.0097040) O0.00-0)
4 0.2 0.2 0.152492(0.0303405) 0.00693147(0.00689673) 0.0(0.0)
5 0.2 0.2 0.263396(0.0446852) 0.038712(0.0172595) 0.0(0.0)
6 0.2 0.2 0.505997(0.0641714) 0.0762462(0.0216879) 0.0(0.0)
"7 0.2 0.2 0.526792(0.0651116) 0.112081(0.0272095) 0.0(0.0)
8 0.2 0.2 0.672353(0.0749465) 0.114958(0.0266312) 0.0(0.0)
9 0.2 0.2 0.977338(0.0930445) 0.156547(0.0322006) 0.0(0.0)
10 0.2 0.2 1.21301(0.113208) 0.168711(0.0340448) 0.0(0.0)
11 0.2 0.2 1.2338(0.116638) 0.238026(0.039367) 0.0(0.0)
12 0.2 0.2 1.45561(0.133149) 0.235557(0.0417515) 0.0145623(0.0144893)
13 0.2 0.2 2.07251(0.145889) 0.343708(0.0472216) 0.0(0.0)
14 0.2 0.2 2.25273(0.147813) 0.35064(0.0516756) 0.0(0.0)
15 0.2 0.2 2.12796(0.161744) 0.327977(0.054881) 0.0125881(0.00800236)
16 0.2 0.2 2.74486(0.170891) 0.471194(0.0614881) 0.0151046(0.0142948)
17 0.2 0.2 3.04985(0.179684) 0.478125(0.0579669) 0.0008991(0.0006283)
18 0.2 0.2 3.39642(0.185603) 0.622168(0.0740848) 0.0008681(0.0008096)
19 0.2 0.2 4.07571(0.212578) 0.832629(0.0828184) 0.0521339(0.0289764)
20 0.2 0.2 4.19354(0.199061) 0.695475(0.0637804) 0.0360905(0.0264117)
3 0.2 0.8 0.277259(0.0449211) 0.00693147(0.00689673) 0.0(0.0)
4 0.2 0.8 0.547586(0.0557068) 0.0207944(0.0118242) 0.0(0.0)
5 0.2 0.8 0.998132(0.065259) 0.103972(0.0247503) 0.0(0.0)
6 0.2 0.8 1.26846(0.0832094) 0.128821(0.0294552) 0.0(0.0)
7 0.2 0.8 1.85763(0.0887012) 0.253066(0.0391569) 0.0120575(0.00854089)
8 0.2 0.8 2.38443(0.10481) 0.360936(0.0487895) 0.0130564(0.012991)
9 0.2 0.8 2.80725(0.0986974) 0.46442(0.0569815) 0.0332153(0.0252187)
10 0.2 0.8 3.16768(0.10009) 0.550636(0.056419) 0.0347772(0.0245527)
11 0.2 0.8 4.08957(0.108937) 0.619519(0.0599677) 0.0317728(0.0316135)
12 0.2 0.8 4.42921(0.113004) 0.708135(0.0682391) 0.018403(0.016857)
13 0.2 0.8 5.15702(0.114451) 0.664393(0.068758) 0.0346816(0.0187861)
14 0.2 0.8 5.85709(0.100626) 0.78386(0.0816895) 0.0176791(0.0119071)
15 0.2 0.8 640468(0.1131) 0.89792(0.0758427) 0.0402969(0.0223391)

Figure 2, pope 1
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no. of prob. prob. heuristic
filters emailed entailing size of space number of optima cost ratio

3 0.8 0.2 0.270327(0.448066) 0.0277259(0.0135829) 0.0(0.0)
4 0.8 0.2 0.60997(0.681121) 0.0277259(0.0135829) 0.0(0.0)
5 0.8 0.2 0.89416(0.971866) 0.0415888(0.0164613) 0.0(0.0)
6 0.8 0.2 1.44175(0.119125) 0.0855333(0.0264176) 0.0(0.0)
7 0.8 0.2 1.6081(0.144361) 0.157725(0.0355865) 0.0(0.0)
8 0.8 0.2 2.18341(0.170456) 0.122422(0.0320054) 0.0135923(0.0132327)
9 0.8 0.2 3.02212(0.174673) 0.156026(0.0367928) 0.00639268(0.00636064)
10 0.8 0.2 3.37563(0.190245) 0.194092(0.0383726) 0.00763135(0.00753294)
11 0.8 0.2 3.81924(0.219739) 0.262072(0.0491324) 0.0782128(0.0489747)
12 0.8 0.2 4.92134(0.222132) 0.251086(0.0458398) 0.049436(0.0312112)
13 0.8 0.2 5.55211(0.233519) 0.229114(0.0449624) 0.0930229(0.039692)
14 0.8 0.2 5.46893(0.269864) 0.326485(0.0540142) 0.0569272(0.0359603)
15 0.8 0.2 6.01652(0.261727) 0.362034(0.0564617) 0.0817849(0.0308793)
3 0.8 0.8 1.04665(0.0432815) 0.0207944(0.0118242) 0.0(0.0)
4 0.8 0.8 1.6081(0.0562091) 0.0762462(0.0216879) 0.0(0.0)
5 0.8 0.8 2.39829(0.0549469) 0.0733694(0.0223444) 0.0(0.0)
6 0.8 0.8 3.02212(0.0567535) 0.0872323(0.0239395) 0.0219433(0.0218333)
7 0.8 0.8 3.80538(0.0567323) 0.15367(0.0318464) 0.0616014(0.02526)
8 0.8 0.8 4.47773(0.0513303) 0.180875(0.0390725) 0.0680312(0.0468534)
9 0.8 0.8 5.1986(0.0541365) 0.162188(0.0372266) 0.0712856(0.03593)
10 0.8 0.8 5.8363(0.0538518) 0.193968(0.0404172) 0.0648062(0.0241476)
11 0.8 0.8 6.63342(0.0482771) 0.242613(0.0448573) 0.118454(0.0395468)
12 0.8 0.8 7.30577(0.0549469) 0.222182(0.0436092) 0.164913(0.052674)

Flpue 2, page 2
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Class oy logical Optimal independent of Satisfied by
equivalences costs and probabilities? a greedy (nonbacktracking)

algorithm?

Conjunctive comnmutivity no yes
Conjunctive elimination of no no

entailed filters
Disjunctive conunutivity no yes

Disjunctive elimination of no no
entailed filters

Various redundancy yes yes
eliminations

Distibutivity factoring yes yes
DeMorgan's Laws inward yes no

Figur 12: SuimaUr of the optimality status of the standard boolean manipulations



.34-

'..- aUi -
-* •8 dma

matcher POW WStr
of query (no joins)

checker

smtnic
matcher

content matcher,
either by user

or by computer

Figure 13: Dependencies between filters in the MARIE system



S=-35 -

coow
-prain language

dmah*e PW
(1)(I ccess))

(all Procesbrs)

Figure 14: Opthel executoam plan for the MARIE system, following the
analysis i the text



oil

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 1

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943 1

Research Office
Code 08
Naval Postgraduate School
Monterey, CA 93943 1

Dr.Neil C. Rowe, Code CSRp
Naval Postgraduate School
Computer Science Department
Monterey, CA 93943-5118 50

Mr. Russell Davis
HQ, USACDEC
Office of Naval Research
Attention: ATEC-IM
Fort Ord, CA 93941

Ralph Wachter, Code 333
Computer Science
Office of Naval Research
Ballston Tower One
800 North Quincy St.
Arlington, VA 22217-5660 1

a


